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Abstract

This paper investigates the design and analysis of a novel energy harvesting device that uses magnetic levitation to

produce an oscillator with a tunable resonance. The governing equations for the mechanical and electrical domains are

derived to show the designed system reduces to the form of a Duffing oscillator under both static and dynamic loads. Thus,

nonlinear analyses are required to investigate the energy harvesting potential of this prototypical nonlinear system.

Theoretical investigations are followed by a series of experimental tests that validate the response predictions. The

motivating hypothesis for the current work was that nonlinear phenomenon could be exploited to improve the effectiveness

of energy harvesting devices.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The concept of vibration-based energy harvesting has received much attention in recent years. For example,
several works have investigated the development of energy harvesters for low-power microelectromechanical
systems or MEMS [1–3]. A particularly motivating circumstance is the development of wireless sensor
networks that could be used in inaccessible or potentially hostile environments to transmit information in a
wireless fashion. Most if not all of these works have focused on the power harvested when the response
behavior can be adequately characterized as a linear oscillator with harmonic excitation. A resounding
conclusion from the literature on energy harvesters operating within the linear regime is that the maximum
power is generated when the system is excited at resonance. Thus, the prototypical approach is to design and
fabricate energy harvesting devices so that the system’s linear resonance matches the excitation frequency
[1,4–6]. This places an inconvenient constraint on the fabrication processes that are used to construct an
energy harvester (i.e. consider MEMS resonators where the frequency of the mechanical resonance can be very
sensitive to small dimensional imperfections).
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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The present paper explores an alternative approach by considering the energy harvesting potential when the
nonlinearities of the system are sufficiently engaged. The motivating question is whether system nonlinearities
can be used to improve the energy harvesting capability? For instance, the design-for-resonance approach
places several performance limitations on the energy harvester. Specifically, a linear device is known to under
perform when the system’s resonance and excitation frequency do not coincide. Alternatively, the energy from
multi-frequency and/or broad-band excitation may not be adequately captured. Problems also arise in
application areas where the excitation frequency varies since the linear harvester will underperform unless the
complexity of the energy harvester is increased by adding more degrees of freedom (e.g. multiple oscillators
[7,8]). While it is not the author’s aim to address whether a single system or approach can be used to resolve all
of the aforementioned complications, we would simply like to draw attention to the fact that alternative
strategies are needed to expand the range of possibilities that designers can implement for improved energy
extraction.

A variety of methods have been used to convert environmental energy into electric energy [3]. For instance,
capacitive energy harvesters with either a bias voltage or electret charge have been described in Refs. [3,9].
Another approach is to use piezoelectric materials to convert mechanical strain into electrical energy. For
instance, several authors have investigated piezoelectric devices that harvest energy from impact, vibration,
and acoustic sources [5,10–12]. Induction is a third approach that may be used to convert environmental
energy into electrical energy. Some recent work in this area includes the investigation of a single translating
magnet generator and rotating microgenerators [13,14].

This paper describes the design and analysis of a novel energy harvesting device that uses magnetic forces to
levitate an oscillating center magnet. A specific goal was to use the nonlinear restoring forces to enable tuning
of the system’s linear resonance—thus alleviating the need to precisely fabricate the device. The formulation of
the system’s governing equations shows the device can be modeled with Duffing’s equation under static and
harmonic excitation. Investigating the frequency response for this nonlinear system reveals the fact that
engaging the system’s nonlinear response could improve the energy harvested.

The work of this paper is organized as follows. The next section describes the experimental system, the
governing equations, and the use of the magnetic restoring forces to tune the system’s linear resonance.
The third section examines the frequency response of the system under harmonic base excitation, contrasts the
response of the current system to a linear counterpart, and investigates the trends related to changes in the
electrical load. This is followed by a series of detailed experiments that compare the theoretical predictions
with experimental measurements. The final section describes the salient features of this work and describes
some final remarks.

2. Experimental apparatus

This section describes the calibration of a restoring force model that is used to predict the system’s linear
resonance under small changes in the magnet spacing. In addition, a model is presented for the interaction of
mechanical and electrical components which allows the governing equations to be reduced to the form of
Duffing’s equation.

2.1. Magnetic levitation and restoring forces

A schematic diagram of the magnetic levitation system is shown in Fig. 1. The device used two outer
magnets that were mechanically attached to a threaded support. The threaded supports were inserted into the
ends of a teflon tube and used to vary the spacing between the magnets. A center magnet was placed between
the two outer magnets and the magnetic poles were oriented to repel the center magnet—thus suspending the
center magnet with a nonlinear restoring force. Here, we emphasize a paradigm shift by noting that
nonlinearity is an integral feature of the energy harvester design. In particular, it will be shown that
nonlinearity allows the linear resonance to be tuned by simply changing the spacing between the upper and
lower magnets.

Magnetic restoring forces were calibrated from measurements of the restoring force and separation distance
between the bottom and center magnet. Fig. 1b shows a series of experimental measurements plotted as a
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Fig. 1. A schematic diagram of the magnetic levitation system with threaded supports to position the outer magnets is shown in (a) Graph

(b) shows the restoring force plotted as a function of the separation distance between the center and bottom magnet.
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function of the separation distance between two magnets. These measurements were fitted to a power series

F sðsÞ ¼
X3
n¼0

ansn, (1)

where s is the separation distance and the coefficients a02a3 are obtained using a least-squares procedure. The
quality of the fitted coefficients was verified from an overlay of the experimental measurements onto the power
series (see Fig. 1b). Force–displacement relationships were then formulated by writing the separation distance
as a function of the center magnet displacement, x. The force–displacement relationships for the top, FtðxÞ,
and bottom magnets, F bðxÞ, are

FbðxÞ ¼
X3
n¼0

anðxþ doÞ
n, (2a)

F tðxÞ ¼
X3
n¼0

anðdo � xÞn, (2b)

where do is the spacing between the magnets shown in Fig. 1a. The total restoring force is given by a vector
summation of the restoring forces acting on the top and bottom magnets, F ðxÞ ¼ FbðxÞ � FtðxÞ,

F ðxÞ ¼ ð2a1 þ 4doa2 þ 6d2
oa3Þxþ 2a3x3 ¼ kxþ k3x3, (3)

where k ¼ 2a1 þ 4doa2 þ 6d2
oa3 is the linear stiffness coefficient and k3 ¼ 2a3. Fig. 2a shows the

force–displacement relationship for the estimated parameters when do ¼ 37:3mm for the experimentally
identified parameters a1 ¼ 36:04N=m, a2 ¼ �4:12� 103 N=m2, and a3 ¼ 6:92� 104 N=m3. An inspection of
Eq. (3), will lead to two important conclusions: (1) changes in the magnet spacing, do, will alter the linear
stiffness and resonance and (2) the nonlinear term is independent of do (at the current approximation level),
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Fig. 2. Graph (a) shows the force–displacement relationship for do ¼ 37:3mm and the coefficients of Table 1. Graph (b) illustrates a

change in the linear resonances as a function of the magnet spacing.
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thus changes in magnet spacing will alter the importance of the nonlinearity by increasing/decreasing the
influence of the linear stiffness.

2.2. Tuning linear resonance

This section describes a potentially beneficial feature of nonlinearity in the restoring force. Specifically,
the nonlinear restoring forces can enable the linear resonance to be tuned for changes in static displacement.
An expression for the linear resonance can be developed from the governing equation for undamped and
unforced oscillations,

m €xþ kxþ k3x
3 ¼ �mg, (4)

where m ¼ 19:5 g is the magnet mass and g ¼ 9:81m=s2 is the gravitational constant. Static equilibrium, xe, is
found by equating the time-varying terms of Eq. (4) to zero to obtain

x3
e þ

k

k3
xe þ

mg

k3
¼ 0. (5)

The undamped oscillations about the nonlinear equilibrium position are found by substituting x ¼ xe þ xðtÞ
into Eq. (4). Dividing by the mass, the coefficient of the linear term becomes the linear resonance. Here, the
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resonance is expressed in terms of both the series expansion coefficients and the restoring force coefficients

o2
n ¼

2a1 þ 4a2do þ 6a3ðd
2
o þ x2

eÞ

m
¼

1

m
ðk þ 3k3x

2
eÞ. (6)

Fig. 2 shows a plot of the linear resonance for changes in the outer magnet spacing. Here, it is interesting to
note that the resonance approximately follows a linear tuning relationship until it reaches a final threshold.

2.3. Governing equations and energy harvesting model

A schematic diagram of the complete energy harvesting device is shown in Fig. 3. The device consists of the
previously mentioned magnetic levitation system and a coil fabricated from seven layers of 36 guage enamel-
coated copper wire that was wound around the outer casing. To describe the model for electromagnetic
induction, we refer to the schematic diagram of Fig. 3b where two reference frames have been applied. The
first reference frame is fixed in space and is used to describe the motion amplitude, A, and excitation
frequency, O, of the outer housing z ¼ A cosOt. The second reference frame, designated as x, describes the
motion of the center magnet. In agreement with the work of Ref. [1], the coil magnetic force is assumed to be
proportional to the relative velocity between the center magnet and outer housing.

The equation for the electrical circuit is obtained by applying Kirchoff’s law to the electrical circuit of Fig. 3a,

iðRload þ RintÞ � að _x� _zÞ ¼ 0, (7)

where i is the electrical current, Rint the internal resistance of the coil, Rload the resistance of the external load,
and a the electromechanical coupling coefficient. This term is commonly expressed as a ¼ NBl where N the
number of coil turns, B the average magnetic field strength, and l the coil length. The following governing
equation for the mechanical system is obtained from a summation of forces in the vertical direction:

m €xþ cmð _x� _zÞ þ kðx� zÞ þ k3ðx� zÞ3 þ ai ¼ �mg, (8)
x

z = Acos (Ωt)

i

Rint

Rload α

N

S

N
S

S

N

Top coil

Bottom coil

Fig. 3. Circuit diagram (a) for the energy harvesting device shown in (b).
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where cm is the damping coefficient used to described the mechanical damping. This is introduced to
approximate the energy losses from viscous damping and friction. An expression for the electrical damping
coefficient is obtained by solving Eq. (7) for the current,

i ¼ a
_x� _z

Rload þ Rint
, (9)

where the current leads to a force that opposes the relative motion due to Lenz’s law [15]. Specifically, electrical
damping arises due to the introduction of a coil to convert the vibration energy into electrical energy. The
expression for the electrical damping coefficient is ce ¼ a2=ðRload þ RintÞ. Eq. (9) can be substituted into Eq. (8)
to obtain a revised governing equation

m €xþ cð _x� _zÞ þ kðx� zÞ þ k3ðx� zÞ3 ¼ �mg, (10)

where c ¼ cm þ ce is the damping coefficient used to described the combined mechanical and electric damping.
In the next section, the model of Eq. (10) is examined to determine the relative velocity, output voltage, and
system power.

3. Analysis of harmonic base excitation

This section investigates the nonlinear response and energy harvesting potential of the system. A change in
variable, y ¼ x� z, is substituted into Eq. (10) to obtain a governing equation written in terms of the relative
displacement between the center magnet and outer housing

€yþ 2zo _yþ o2yþ by3 ¼ Fo þ F 1 cosOt, (11)

where the coefficients of Eq. (10) have been rewritten as

2zo ¼
c

m
, (12a)

o2 ¼
k

m
, (12b)

b ¼
k3

m
, (12c)

Fo ¼ g, (12d)

F 1 ¼ O2A. (12e)

Next, several terms from Eq. (11) are reordered to aid in the nonlinear analysis that follows:

€yþ 2�m _yþ o2yþ �b̂y3 ¼ F o þ 2�F̂1 cosOt, (13)

where � has been introduced as a book keeping parameter and the terms 2�m ¼ 2zo, �b̂ ¼ b, and 2�F̂ 1 ¼ F 1

have been applied. The goal of the next section is to analyze Eq. (13) to obtain an expression for the response
amplitude of the system under harmonic base excitation.

3.1. Frequency response from the method of multiple scales

This section derives the frequency response of the system using a perturbation technique known as multiple
scales. While many researchers have applied this approach to nonlinear oscillation problems [16], we show the
derivation of the frequency response for the sake of completeness. The assumed solution to Eq. (13) is written
as a first-order expansion

yðt; �Þ ¼ y0ðt; t1Þ þ �y1ðt; t1Þ, (14)
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where the independent time scales are defined as t ¼ t, t1 ¼ �t. It follows that the derivatives with respect to
time become partial derivatives with respect to the corresponding time scale

d

dt
¼

q
qt
þ

dt1
dt

q
qt1
¼ D0 þ �D1, (15a)

d2

dt2
¼ D2

0 þ 2�D0D1. (15b)

Substituting Eqs. (14) and (15b) into Eq. (13) and separating the result into the orders of epsilon Oð�Þ gives the
following two linear equations:

Oð�0Þ:D2
0y0 þ o2y0 ¼ F o, (16a)

Oð�1Þ:D2
0y1 þ o2y1 ¼ �2D0D1y0 � 2mD0y0 � b̂y3

0 þ 2F̂1 cosOt, (16b)

where the terms of Oð�2Þ and higher have been neglected—as in the expansion defined by Eq. (14). The solution
to the Oð�0Þ equation is of the form

y0 ¼ Aðt1Þeiot þ Āðt1Þe�iot þ
Fo

o2
, (17)

where Aðt1Þ and Āðt1Þ are complex conjugates that are functions of the higher time scale. This solution is
substituted into the Oð�1Þ equation to obtain

D2
0y1 þ o2y1 ¼ � 2io½Aðt1Þ

0
þ mAðt1Þ�eiot � b̂ 3A2ðt1ÞĀðt1Þ þ

3Aðt1ÞF 2
o

o4

� �
eiot

� b̂ Aðt1Þ
3e3iot þ

3Fo

o2
A2ðt1ÞĀðt1Þe2iot þ

F o

o2
3Aðt1ÞĀðt1Þ þ

F 2
o

2o4

� �� �
þ 2F̂ 1 cosOtþ CC, (18)

where the prime denotes a derivate with respect to t1 and CC denotes the complex conjugates of the terms on
the right-hand side. A choice must now be made on whether a more accurate solution is preferred for the near
or away from resonance. Since it is common to excite the system close to resonance, we have chosen to obtain
a more accurate frequency response near resonance. Thus, near resonance excitation is assumed and the
following substitution, O ¼ oþ �s, is introduced into Eq. (18) to describe the nearness of O to o. The term s
is often called a detuning parameter and acts to describe the nearness of O to o. The Oð�1Þ equation after
substitution becomes

D2
0y1 þ o2y1 ¼ � 2io½Aðt1Þ

0
þ mAðt1Þ�eiot � b̂ 3A2ðt1ÞĀðt1Þ þ

3Aðt1ÞF 2
o

o4

� �
eiot

� b̂ Aðt1Þ
3e3iot þ

3Fo

o2
A2ðt1ÞĀðt1Þe2iot þ

F o

o2
3Aðt1ÞĀðt1Þ þ

F 2
o

2o4

� �� �
þ F̂ 1e

iðotþst1Þ þ CC. (19)

The next step requires eliminating the terms in Eq. (18) that cause an unbounded solution. These terms, the
coefficients that multiply eiot in Eq. (19), are commonly referred to as secular terms. They are eliminated by
setting them to equal zero

�2ioðAðt1Þ
0
þ mAðt1ÞÞ � 3b̂ A2ðt1ÞĀðt1Þ þ

F2
o

o4
Aðt1Þ

� �
þ F̂ 1e

st1 ¼ 0. (20)

Following Ref. [17], the polar form Aðt1Þ ¼ 1
2 aðt1Þeifðt1Þ is now introduced into the above equation. After

simplifying the result, the following equation is obtained:

�ioða0 þ aif0 þ maÞ �
3

8
b̂ a3 þ 4a

F 2
o

o4

� �
þ F̂1e

iðst1�fÞ ¼ 0. (21)
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Eq. (21) is then separated into real and imaginary components. After the substitution of g ¼ st1 � f, the
resulting equations become

ag0 ¼ as�
3b̂
8o

a3 þ 4a
F2

o

o4

� �
þ

F̂1

o
cos g, (22a)

a0 ¼ �maþ
F̂ 1

o
sin g. (22b)

The equilibria solutions of Eqs. (22a) and (22b) represent the steady-state periodic solutions of the system.
They can be found by setting g0 ¼ 0 and a0 ¼ 0. Squaring and adding these relationships results in an
expression for the frequency response for the nonlinear system

m2 þ s�
3b̂
8o

a2 þ 4
F 2

o

o4

� � !2
2
4

3
5a2 ¼

F̂
2

1

o2
. (23)

Before examining the response of the system, we expand Eq. (23) and rewrite it in terms of the physical
parameters of the system. The modified frequency response equation is

3b
8o

� �2

a6 þ
9b2F2

o

8o6
þ

3

4
b 1�

O
o

� �� �
a4

þ
3bF2

o

2o5

� �2

þ
3bF 2

o

o4
1�

O
o

� �
þ O� oð Þ

2
þ ðzoÞ2

 !
a2 �

F 1

2o

� �2

¼ 0. (24)

Although the above equation gives the response amplitude for the relative displacement, the relative velocity is
the more meaningful quantity for the energy harvesting device. Thus the relative displacement response
y ¼ a cosðOt� gÞ must be differentiated to obtain the predicted relative velocity _y ¼ �Oa cosðOt� gÞ. In the
results that follow, we report the absolute value of the relative velocity using the notation j _yj.

3.2. Example response predictions

The level of damping in the energy harvester can be modified by increasing or decreasing the resistance of
the electrical load. To illustrate the energy harvesting considerations, a series of relative velocity predictions
have been presented in Figs. 4 and 5. While each figure shows the relative velocity response for three different
excitation levels, the damping level was increased for the results of Fig. 5—representative of a decrease in the
resistive load. One noticeable change is the significant decrease in the relative velocity that is associated with
an increase in damping. In addition, the increased damping has alleviated the multiple periodic attractors and
jump phenomena from the response of Fig. 5b.

An interesting result from Fig. 4b and c is the extended range of large amplitude responses that are provided
by engaging the nonlinearity of the system. In essence, these examples show the system nonlinearity could
potentially be used to provide large relatively velocities over a wider range of excitation frequencies. Another
important consideration is that the maximum relative velocity for Fig. 4b and c do not occur at the location of
the linear resonance (i.e. results can be compared with those of Fig. 4a). The implications of this observation
will be discussed further in the sections that follow.

3.3. Power delivered to the electrical circuit

Since the power transferred to the electrical domain is of primary importance, this section derives
expressions for the power transferred to the electrical load. We have assumed that the system’s response is
dominated by a single harmonic in the results that follow. Using Eq. (7) or the results of Ref. [1], the current
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|ẏ
|(

m
m

/s
)

200

400

600

Ω /2π (Hz)

6 7 8 9 10 11 12 13 14
Ω /2π (Hz)

6 7 8 9 10 11 12 13 14
Ω /2π (Hz)

| ẏ
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passing through the electrical load can be written as

iðtÞ ¼ �
a

Rload þ Rint

� �
Oa sinðOt� gÞ. (25)

The instantaneous power can then be computed from

PðtÞ ¼ i2Rload ¼
1

2

aaO
Rload þ Rint

� �2

Rloadð1� cos 2ðOt� gÞÞ. (26)

The average of Eq. (26) over a single period gives the following expression for the average power delivered to
the electrical load:

Pav ¼
aaO

Rload þ Rint

� �2

Rload. (27)
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Perhaps the most important quantity is the maximum average power that is delivered to the electrical load.
This quantity is given by

Pavmax ¼
aOmaxamax

ðRload þ RintÞ

� �2

Rload, (28)

where amax is the maximum amplitude of the frequency response which occurs when the system is excited at
O ¼ Omax. Since the largest amplitude will occur away from the linear resonance, analytically computing
Pavmax requires further analysis. To compute the frequency of maximum response, Eq. (24) was differentiated
with respect to both O and a. Next, the quantity differentiated with respect to a is inverted and multiplied by
the quantity that was differentiated with respect to O to obtain da=dO. After setting da=dO ¼ 0, the following
relationships was obtained to relate amax and Omax,

Omax ¼
3b
8o

a2
max þ

3bF 2
o

2o5
þ o. (29)

An expression for the magnitude of the maximum response was obtained by substituting O ¼ Omax into
Eq. (24) to obtain amax ¼ F 1=2zo2. After substituting this relationship into Eq. (29), the excitation frequency
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where the maximum response occurs can be found as

Omax ¼
3bF2

1

32o5z2
þ

3bF2
o

2o5
þ o. (30)

Substituting Eq. (30) into Eq. (28) then gives the final expression for the maximum power in terms of the
system parameters and the excitation amplitude

Pavmax ¼ aF1
3F2

1bþ 48bF2
oz

2
þ 32z2o2

64z3o7ðRint þ RloadÞ

� �2

Rload. (31)

In the above expression, we note that F 1 is also a function of the excitation frequency since the base excitation
was defined in terms of a constant displacement. However, writing Eq. (31) as shown is consistent with the
experiments that follow where a constant seismic acceleration amplitude, F1, was used for base excitation. We
would also like to draw attention to the fact that the above expression is the exact solution for the derived
frequency response. However, the authors recognize that the derived frequency response equation is not exact.
Furthermore, the response of the nonlinear system may also include sub- or super-harmonics which could
potentially alter the derived relationship.
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3.4. Comparison of linear and nonlinear energy harvesting

The past section highlights that the power delivered to the electrical load is proportional to the oscillator
velocity amplitude. Thus the results of this paper will compare the relative velocity responses while recognizing
that the power scales according to the results of Section 3.3. This section compares the relative velocity
responses of the nonlinear device with those of a linear device. To define an equivalent linear oscillator, the
linear system was assumed to be governed by

€yþ 2gon _yþ o2
ny ¼ F 1 cosOt, (32)

where g and on are the damping ratio and natural frequency, respectively. Response comparisons were made
by first establishing a baseline case which is shown in Fig. 6a. While the linear oscillator natural frequency was
determined from the procedure outlined in Section 2.2, the damping ratio was set by matching the peak
responses of the two systems in Fig. 6a.

One observation is that the response for both systems scales almost linearly within some regime of excitation
amplitudes. However, once the nonlinearities have been sufficiently engaged, as shown in Fig. 6b and c, the
peak response of the nonlinear system no longer scales linearly and is relocated away from linear resonance.
Thus the ability to tune the restoring forces becomes an essential consideration for applications with a fixed-
frequency harmonic excitation. Another interesting aspect of the frequency response for the nonlinear system
is the relatively large amplitudes that persist over a much larger range of frequencies. Certainly, this type of
response could prove beneficial for applications with either fixed or varying excitation inputs.

Although the nonlinear response could be used for improved energy reclamation, multiple period solutions
can also exists in some regions of the frequency response—one solution representing a relatively small
response and the other representing the higher amplitude response. Since this region is sensitive to initial
conditions, we note that a jump from the smaller response to the larger response could be triggered by a
perturbation (i.e. from the basin of attraction of a small response to the basin of attraction for the larger
response). For the present system, the perturbation could either be applied mechanically or electrically by
momentarily increasing the coil current.

4. Experimental investigation

This section describes the series of experimental tests that were performed to compare experimental
measurements with theoretical predictions. The experimental tests can be broadly separated into the
performance of: (1) frequency sweeps or changes in the excitation frequency while holding all other
experimental variables constant and (2) excitation amplitude sweeps where the excitation amplitude was
varied while holding the excitation frequency and all other variables constant. In an effort to capture
hysteresis in the response behavior, along with the presence of multiple periodic attractors, both increasing
and decreasing frequency and amplitude sweeps were performed.

4.1. Measurement and instrumentation

Fig. 7 shows the primary equipment used during the experimental tests. Harmonic base excitation was
applied by mounting the energy harvesting device to a LDS V400 modal shaker. To alleviate magnetic field
interference from the shaker, an aluminum extension piece was used to distance the energy harvesting device
away from the shaker base. Measurements of the shaker acceleration were obtained by mounting an
accelerometer to the shaker mounting surface. When frequency sweeps were performed, it became necessary to
control the shaker acceleration. Thus a shaker controller was used to monitor and control the amplitude of the
shaker acceleration at the excitation frequency. Measurements of center magnet absolute velocity were
obtained by shining a laser vibrometer through an access hole drilled in the top threaded support of the energy
harvesting device (see Fig. 7).

Since the theoretical predictions focus on the relative motion between the center magnet and the outer
housing, a series of calibration experiments were performed to relate measured coil voltages to the relative
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Table 1

Identified model parameters for the experimental system that were applied during theoretical studies

Parameter Value Units

m 0.0195 kg

k 35.0 N/m

k3 1:384� 105 N/m3

o 42.36 rad/s

z 0.115 None

b 7:098� 106 N/kgm3

Fo �9:81 m/s2

Reported relationships are for do ¼ 36:3mm.

Laser Vibrometer

Shaker

Aluminum extension

Energy harvesting device Center magnet

Data acquisition

Shaker controller
Data acquisition

Accelerometer

Control signal

Fig. 7. Schematic diagram of the primary experimental instrumentation and shaker controller. A laser vibrometer was used to measure the

absolute velocity of the center magnet during calibration. Afterwards, the center magnet velocity was determined from the measured coil

voltage.
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velocity. Furthermore, determining this calibration curve was required to compare theoretical predictions with
experimental measurements. To make accurate predictions for the response of the system, the system damping
was also required. The electrical damping was determined from the measured coil internal resistance
Rint ¼ 188O, the resistance of the electrical load Rload ¼ 1� 106O, and the coil electromechanical coupling
coefficient a ¼ 7:752V s=m. The total damping was then determined by combining the electrical damping,
ce ¼ 6:01� 10�5 N s=m, with the mechanical damping, cm ¼ 0:190N s=m, to obtain the damping ratio
reported in Table 1.
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Fig. 8. Experimental velocity response amplitudes from forward (red dots) and reverse frequency sweeps (green circles) are compared

with theory. Theoretical predictions are separated into stable solutions (solid black line) and unstable solutions (dashed black line).

Graph (a) shows results for F1 ¼ 2:1m=s2 and the results of graph (b) are for F1 ¼ 8:4m=s2.
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4.2. Comparisons of experiment with theory

The theoretical predictions of this section use the experimentally identified parameters of Table 1. The first
series of experimental tests are shown in Fig. 8. This figure compares the response behavior from
approximately 100 upward frequency sweeps, where the excitation was started at a low frequency and slowly
increased, to the response behavior of 100 downward frequency sweeps, where the excitation frequency was
started at a higher value and slowly decreased. In addition, theoretical velocity predictions are compared with
the experimentally obtained velocity predictions. As shown in Fig. 8a, at relatively low excitation levels, the
frequency response of the system look very similar to the response of a linear system (i.e. no hysteresis in
upward or downward responses and only a single periodic attractor at each excitation frequency). However,
the results of Fig. 8b show an increase in excitation amplitude will cause the appearance of multiple periodic
attractors and hysteresis in the frequency response curves. Perhaps another interesting observation is that the
measured experimental behavior compares favorably well with theoretical predictions. In particular, both
theory and experiment capture the jump phenomena near the primary resonance and the presence of multiple
periodic attractors under relatively large excitation amplitudes.

Another series of experimental tests are shown in Fig. 9. Here, the top graph shows the largest excitation
amplitude used for the upward and downward frequency sweep tests. In graph (b), we show the results of
experimental amplitude sweep tests. While approximately 100 responses were recorded for the upward and
downward sweep test of Fig. 9a, relatively fewer results were recorded for the experiments of Fig. 9b. This is
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because the amplitude sweep results were obtain by manually increasing or decreasing the excitation
amplitude. As in the results of the previous figure, experimental responses are found to compare favorably
with theoretical predictions. However, both cases of Fig. 9 are shown to exhibit the jump phenomena.

5. Discussion

This paper describes the design and analysis of a novel energy harvesting device that uses magnetic restoring
forces to levitate an oscillating center magnet. The mathematical model for the energy harvesting device is
derived and then examined for the case of harmonic base excitation. Perhaps an interesting aspect is that the
governing equation for relative displacement reduces to the form of Duffing’s equation. The present
investigations reveal that engaging the nonlinear response of system can result in relatively large oscillations
over a wider range of frequencies—thus potentially improving the ability to harvest energy under certain
circumstances.

Expressions that consider the coupling between the mechanical and electrical domains are derived for the
instantaneous, maximum, and average power. Unlike energy harvesting devices that operate within a linear
regime, the excitation frequency where the maximum power is delivered to the electrical load can be at a
frequency away from linear resonance. Thus we have developed an expression for the excitation frequency
where maximum power occurs.
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The nonlinear response behavior of the harvester is shown to be strongly dependent on the damping level.
Although we have derived expressions for the interplay between the parameters of the mechanical system and
the electrically induced damping, we have not explicitly explored the maximum power output for our
experimental system. This was omitted because we recognized that an excessive level of input excitation would
have been required to engage the nonlinear behavior—due to the relatively large mechanical damping.
However, some practical improvements to the presented design, such as the implementation of methods
to reduce the damping due to frictional contact between surfaces, could be implemented to reduce the
mechanical damping.

The coexisting periodic solutions provide an additional complication that is not observed in the linear
counterpart. Specifically, both low- and a high-energy responses can coexists for the same parameter
combinations. However, we suggest that one could use the coupling between the electrical circuit and
mechanical oscillations to trigger a jump to the more desirable attractor. The developed theoretical studies are
compared with a series of experimental tests to confirm the response behavior of the experimental system. As
was noted previously, the response behavior of the experimental system is shown to compare favorably with
theoretical predictions.
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